

Stimulating LEV Sales in Australia: Exploratory Analysis of Experiences in 15 World Cities

Professor Simon Washington

Transport and Main Roads Chair Auto CRC Theme Leader: Consumer Demand for Australian Clean Vehicles CEBE and CARRS-Q

Jesse McGrath

Undergraduate Engineering Student Queensland University of Technology

QUT/AutoCRC Current Research Planning around LEVs

- 1. Preparing national surveys (across 4 countries) to assess market supply and demand issues
- 2. Working with auto manufacturer to focus on PHEVs
- 3. Working with energy company to focus on charging behaviour
- 4. Working with industry to examine inductive charging technology roll out strategies
- 5. Working with stakeholders to assess real world driving experiences/planned future purchase needs

a university for the real world [®] Faculty of Science and Engineering Queensland University of Technology

Overall Aim of this Research

In support of planned Australian research (through Auto CRC), quantitatively explore data from multiple world cities in order to identify significant factors and their roles in influencing LEV market penetration (MP) rates

QUT a university for the **real** world[®]

(Brief) Literature

- Fossil fuelled vehicles are the dominant form of personal transportation due to cost, availability and support infrastructure [1]
- Fossil fuel vehicles significantly contribute to global carbon emissions [2]
- MP rates are interdependent on technologies, infrastructure and consumer preferences [3]
- Consumers form preferences for vehicles based on observed performance of all technologies [1]

[1] Vooren, A. V. D., & Alkemade, F. (2012). Managing the Diffusion of Low Emission Vehicles. Engineering Management, IEEE Transactions on, 59(4), 728-740. doi: 10.1109/tem.2012.2185802

[2] Veazey, M. V. (2002). Low emission vehicle study. Materials Performance, 41(12), 13-13.

[3] Nishino, N., Iino, T., Tsuji, N., Kageyama, K., & Ueda, K. (2011). Interdependent decision-making among stakeholders in electric vehicle development. CIRP Annals - Manufacturing Technology, 60(1), 441-444. doi: http://dx.doi.org/10.1016/j.cirp.2011.03.048

a university for the real world [®] Faculty of Science and Engineering Queensland University of Technology

- A US study [1] on government policy impacts on MP of clean vehicles suggests that a combination of policies and costs with a **7-year payback period could double MP rates**. With the current US energy mix, EVs will not achieve CO2 targets; whereas ultra fuel efficient ICEs may (72mpg or greater).
- In a Swiss study [2] focused on MP of natural gas powered vehicles, the authors emphasize "the influence of the height and timing of subsidies, tax reductions and other stimulation policies are not well understood."
- A Canadian study [3] on MP of clean vehicles concluded that "reduced monetary costs, [tax incentives], and low emissions rates would encourage households to adopt a cleaner vehicle. .., incentives such as free parking and permission to drive in HOV lanes....were not significant."

[1] Barter et al. Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles. Energy Policy 46 (2012).

- [2] Janssen et al. Model aided policy development for the MP of natural gas vehicles in Switzerland. Trans Res Part A 40 (2006)
- [3] Potoglou and Kanarglou. Household demand and willingness to pay for clean vehicles. Trans Res Part D 12 (2007)

QUT a university for the **real** world [®]

- In a comprehensive review of current studies of LEV MP [1], the authors state: "modelling of [LEV] MP rates should include improved interfaces with consumer surveys, modelling of automakers' actions, federal and state policy and its effect on automotive markets, competition among technologies, market volume, vehicle classifications, and model parameters sensitivity analysis."
- There are numerous MP studies in the literature:
 - Discrete choice studies of household-level vehicle purchase decisions
 - Time series studies of MP over time
 - Agent-based modelling studies
- Very few that recognize the possible simultaneity of supply and demand in the marketplace, and apply an IV approach

[1]Al-Alawi and Bradley. Review of hybrid, plug in hybrid, and electric vehicle market studies. Renewable and Sustainable Energy Reviews: 2013

Some Relevant Underlying Theory: Idealised Market Demand for Clean Vehicles

Demand is a function of price (perceived product value), and can be altered by government policies, prices, etc.

For example, a "free parking" policy might shift the demand curve to the right, from D1 to D2.

A shift to the right should increase the market penetration (Q1 to Q2), and the marketplace would respond by increasing the price from P1 to P2.

However, this view assumes there will not be a supply shift.

a university for the real world®

Specific aims and questions

- 1. Test for evidence of simultaneity in the MP data: (are demand and supply curves independent?)
- 2. Examine how a variety of market costs influence MP
- 3. Examine the role that government policies seem to play in MP

QUT a university for the real world ®

Background Data

Market Penetration Rates and Ranges

SOURCES: Analys, Trafik. (2008-2012). Traffic Analysis. In Trafik Analys (Ed.).

Beresteanu, Arie, & Li, Shanjun. (2011). GASOLINE PRICES, GOVERNMENT SUPPORT, AND THE DEMAND FOR HYBRID VEHICLES IN THE UNITED STATES*. International Economic Review, 52(1), 161-182. Government, Hong Kong Special Administrative Region. (2011). Monthly Traffic and Transport Digest. Hong Kong: Retrieved from http://www.td.gov.hk/en/transport_in_hong_kong/transport_figures/monthly_traffic_and_transport_digest/index.html. Sentralbyrå, Statistisk. (2012). Registered Vehicles, 2011. http://www.ssb.no/en/bilreg

Continuous Data Available for Modelling

Pneumonic	Description	Measurement Units	Mean Value			
MP	Market Penetration Rate	%	1.093			
NR	Number of newly registered vehicles in the region	#cars	1281.4			
TOTREG	Total number of newly registered vehicles in the region	#cars	192920			
PCINC	Per Capita income for a given region	\$USD	50934			
POPDEN	Population Density for a given region	Population/km ²	11002			
CRLCST	Manufacturer Retail Price for base model Toyota Corolla	\$USD	33602			
PRCST	Manufacturer Retail Price for base model Toyota Prius	\$USD	46013			
INFL	Inflation rate for a given region	%	2.368			
FUEL	Average cost of fuel within a given region	\$USD/Gal	5.9986			
CInCstPct	Clean Vehicle Cost (Prius) as a percentage of household income (proxy)	%	90.625			
ClnVehSur	Premium placed on the cost of a clean vehicle as a percentage of the ICE vehicle (proxy)	%	38.1			

a university for the real world ®

Government Policy Data Available (indicators)

SOURCES: Beresteanu, Arie, & Li, Shanjun. (2011). GASOLINE PRICES, GOVERNMENT SUPPORT, AND THE DEMAND FOR HYBRID VEHICLES IN THE UNITED STATES*. International Economic Review, 52(1), 161-182. Commission, European. (2012). Clean Vehicle Europe. Norway - Regional Level, from http://www.cleanvehicle.eu/info-per-country-and-eu-policy/member-states/norway/local-regional-level/ Commission, European. (2012). Clean Vehicle Europe. Norway - National Level, from http://www.cleanvehicle.eu/info-per-country-and-eu-policy/member-states/norway/national-level/ Commission, European. (2012). Clean Vehicle Europe. Sweden - National Level, from http://www.cleanvehicle.eu/info-per-country-and-eu-policy/member-states/sweden/national-level/ Commission, European. (2012). Clean Vehicle Europe. Sweden - Regional Level, from http://www.cleanvehicle.eu/info-per-country-and-eu-policy/member-states/norway/local-regional-level/ Singapore, National Environment Agency -. (2012). Green Vehicle Rebate, from app2.nea.gov.sg/topics_gvr.aspx

QUT ^{a university for the **Γeal** world [®] Faculty of Science and Engineering Queensland University of Technology}

Background Data

Market Penetration, Inflation and Per Capita Income Correlation

Modelling Approach

- The assumption of independent supply and demand curves is first tested
- Supply variables are captured through a premium on a clean vehicle (proxied by relative price of the Toyota Prius to Corolla, base models)
- Demand side variables are captured by various cost variables
- We test policy indicators as having direct effects on demand (increase) or supply (through a price premium)

a university for the **real** world [®] Faculty of Science and Engineering

Queensland University of Technology

GMM Instrumental Variables Estimation of Simultaneous MP and Clean Vehicle Surcharge

Number of clus	sters (countr	y) = 15			Number of obs	= 46
					F(6, 14)	= 34.27
					Prob > F	= 0.0000
Total (centere	ed)SS =	76.8553342			Centered R2	= 0.5761
Total (uncente	ered) SS =	131.804206			Uncentered R2	= 0.7528
Residual SS	, =	32.57626687			Root MSE	= .8415
		Robust				
MrktPenRate	Coef	Std Err	7	P> 7	[95% Conf	Intervall
ClnVehSur	.0777984	.0103209	7.54	0.000	.0575698	.0980269
inflation	2956262	.0668421	-4.42	0.000	4266343	1646182
pcinc10k	.4629396	.0850584	5.44	0.000	.2962283	.629651
FTIR10k	3.383409	.4415246	7.66	0.000	2.518037	4.248782
ClnVehCstPct	0495685	.0072179	-6.87	0.000	0637154	0354217
ReducedVAT	.9737041	.1702029	5.72	0.000	.6401126	1.307296
Constant	-3.386457	1.064092	-3.18	0.001	-5.47204	-1.300875
Anderson canor	corr. LR s	tatistic (ide	ntifica	tion/TV	relevance test	·): 60.472
		04010010 (140		Chi	-sq(4) P-val =	
Hansen J stati	lstic (overid	entification	test of	all ins	struments):	6.619
				Chi	-sq(3) P-val =	= 0.0851

a university for the real world®

Interpretation of MP Model

Market Penetration	Estimated Elasticity							
Cost Factors								
Clean vehicle surcharge ⁽¹⁾	0.07% increase in MP per 1% premium increase							
Per capita med income/10k	0.46% increase in MP per 10k increase in med income							
Reduced sales tax (VAT)	0.97% increase in MP for a reduced sales tax incentive							
Fuel cost per 10k income ⁽²⁾	3.38% increase in MP per unit increase in fuel/10k							
Clean vehicle cost (as a	0.05% decrease in MP per 1% increase in hh income							
percentage of med hhinc)								
Inflation rate	0.29% decrease in MP per 1% increase in inflation							
⁽¹⁾ The clean vehicle surcharge is endogenous. It captures the value of government								
policies on the price offered for the vehicle.								

(乙)	IUEL	COST	1S	ın	US	dollars	per	gallon.	Average	Iuel	COST	per	TOK 1	lS	⊥.23	

Clean Vehicle Surcharge (proxy) Policy Factors	Estimated Elasticity
Market penetration rate, %	7.6% increase in surcharge per 1% increase in MP
Reduced road tax	29.0% increase in surcharge
Reduced emissions tax	14.8% increase in surcharge
Exempt from sales tax	11.0% increase in surcharge

Model Implied Aggregate Supply and Demand Curves for Clean Vehicles (1 example)

Market Penetration Rate

Conclusions

- Increases in clean vehicle surcharge, fuel price (relative to income), household income, and reduced sales tax positively influence the clean vehicle MP
- Inflation and the cost of clean vehicles (relative to income) negatively influence the market penetration of clean vehicles
- Most clean vehicle government policies serve to 1) increase the clean vehicle premium price, then 2) increase market demand due to bundling of values and the simultaneity of supply and demand

a university for the **real** world [®]

Further Work

- A larger sample of cities is desired
- Better measurement of clean vehicle premiums, and differentiation among competing technologies is needed in updated modelling
- How to capture auto-maker constraints in modelling the supply curve would lead to improved ability to reflect industry factors (e.g. homologation costs)
- Sensitivity econometric improvements are desired
- It may be possible to monetise the government policy variables

